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Abstract. The radiative return offers the unique possibility for a measurement of the cross section of
electron–positron annihilation into hadrons over a wide range of energies. The large luminosity of present
φ- and B-factories easily compensates for the additional factor of α due to the emission of a hard photon.
Final states with photons at large angles can be easily identified. The rate for events with collinear photons,
however, is enhanced by a large logarithm and allows, in particular at lower energies, for a complementary
measurement. The Monte Carlo generator PHOKHARA, which includes next-to-leading order corrections
from virtual and real photon emission, has been extended from large photon angles into the collinear re-
gion, using recent results for the virtual corrections. In addition, the present version includes final state
radiation for muon and pion pair production and final states with four pions. Implications for the experi-
mental analysis at three typical energies, 1.02, 4 and 10.6 GeV, are presented: the magnitude of these new
corrections is studied, possibilities for the separation of initial and final state radiation are proposed, and
the differences with respect to the previous treatment based on structure functions are investigated.

1 Introduction

Measurements of the cross section for electron–positron
annihilation into hadrons are essential for the interpreta-
tion of the recent, precise results for the muon anomalous
magnetic moment aµ [1]. Similarly they are relevant for
our knowledge of the running of the fine structure con-
stant and thus are crucial for the analysis of electroweak
precision measurements at high energy colliders [2–4].

Of particular importance for these two applications is
the low energy region, say from threshold up to centre-
of-mass system (cms) energies of approximately 3 GeV for
aµ and 10 GeV for α(MZ). Recent measurements based
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on energy scans between 2 and 5 GeV have improved the
accuracy in part of this range [5]. Similar, or even further
improvements below 2 GeV would be highly welcome. The
region between 1.4 GeV and 2 GeV, in particular, is poorly
studied and no collider will cover this region in the near
future. Improvements on the precise measurements of the
pion form factor in the low energy region by the CMD2
and DM2 collaborations [6], or even an independent cross-
check, would be extremely useful, in particular in view
of the disagreement between e+e− data and the analysis
based on isospin-breaking-corrected τ decays [4].

Traditionally the energy dependence of the cross sec-
tion was deduced from experiments where the beam en-
ergy was varied over the range dictated by the energy
reach of the collider. This “energy scan” allows, at a first
glance, a fairly simple interpretation of the measurement
in terms of the so-called R-ratio, which enters the afore-
mentioned applications. Nevertheless also in this case ini-
tial state radiative corrections (ISR) give rise to compli-
cations and require a complicated unfolding procedure as
discussed below.

As an alternative the “radiative return” has been sug-
gested [7–10] as a particularly attractive option for φ- and
B-meson factories. These collider experiments operate at
fixed energies, albeit with enormous luminosities. BABAR
and BELLE at 10.6 GeV, CLEO-C in the region between 3
and 5 GeV and KLOE at 1.02 GeV are the experiments of
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interest for the subsequent considerations. This peculiar
feature of a “factory” allows for the use of the radiative
return, i.e. the reaction

e+(p1) + e−(p2) → γ(k1) + γ∗(Q) (→ hadrons) , (1)

to explore a wide range of Q2 in a single experiment.
Nominally invariant masses of the hadronic system be-

tween the production threshold of the respective channel
and the cms energy of the experiment are accessible. In
practice, to clearly identify the reaction, it is useful to con-
sider only events with a hard photon tagged or untagged
– which lowers the energy significantly.

To arrive at reliable predictions for differential and for
partially integrated cross sections, including kinematical
cuts as used in experiments, a Monte Carlo generator is
indispensable. The inclusion of radiative corrections in the
generator and in the experimental analysis is essential for
the precise extraction of the cross section. For hadronic
states with invariant masses below 2 to 3 GeV, it is desir-
able to simulate the individual channels with two, three
and up to six mesons, i.e. pions, kaons, η’s, etc., which
requires a fairly detailed parametrisation of various form
factors.

A first programme, called EVA, was constructed some
time ago [7] to simulate the production of a pion pair
together with a hard photon. It includes initial state ra-
diation, final state radiation (FSR), their interference, and
the dominant radiative corrections from additional
collinear radiation through structure function (SF) tech-
nique [11]. A similar programme that simulates the pro-
duction of four pions together with a hard photon has
been developed in [9]. More recently a new Monte Carlo
generator called PHOKHARA [12] was developed. It in-
cludes, in contrast to the former generators, the complete
next-to-leading order (NLO) radiative corrections.

The first version of PHOKHARA incorporates ISR
only and is limited to π+π−γ(γ) and µ+µ−γ(γ) as final
states. PHOKHARA exhibits, however, a modular struc-
ture that simplifies the implementation of additional
hadronic modes or the replacement of the current(s) of the
existing modes. Its first version was designed to simulate
configurations with photons emitted at relatively large an-
gles, θ2 � m2

e/s. In this case it is legitimate to drop terms
proportional to m2

e, an assumption that leads to a consid-
erable simplification of the virtual corrections [13]. Subse-
quently analytical results for the virtual corrections, that
are also valid into the small-angle region, were obtained in
[14]. The extension of the programme PHOKHARA into
this small-angle region, incorporating these new analytic
results are the central topic of the present paper. The de-
scription of this new feature and numerous tests of the
programme stability and technical precision are contained
in Sect. 2.

Final state radiation can affect the measurement of the
pion form factor, and quite generally of the R-ratio. How-
ever, using suitable cuts, its effects can be significantly
reduced. Moreover, given sufficiently large event rates its
magnitude can be extracted experimentally by varying the
cuts and/or comparing events with different photon angles

with respect to beam and pion directions, respectively.
The charge asymmetry that arises from ISR–FSR inter-
ference provides another important handle on this “back-
ground”. For this reason FSR from π+π− and µ+µ− has
been incorporated in the upgrade of the programme and
will be discussed in Sect. 3. The µ+µ− final state is still
limited to its QED part, e.g. the narrow resonances (J/ψ)
are not (yet) included.

The programme has also been extended to include fi-
nal states with four pions, following the lines discussed
in [9]. The implementation of these new channels will be
discussed in Sect. 4.

2 The radiative return for small-angle
emission and tests of the programme

The study of events with photons emitted under both large
and small angles, and thus at a significantly enhanced rate,
is particularly attractive for the π+π− final state with its
clear signature [15–20]. In contrast events with a tagged
photon, emitted at a large angle, have a clear signature
particularly suited to the analysis of hadronic states of
higher multiplicities [21,22].

The inclusion of radiative corrections is essential for
the precise extraction of the cross section, which is neces-
sarily based on a Monte Carlo simulation. The complete
NLO corrections have recently been implemented in the
programme PHOKHARA. However, just like the earlier
EVA, this programme was designed for photon emission at
large angles (“tagged photons”). For nearly collinear pho-
tons, corrections from virtual and real photon emission, as
well as Born terms, must include those contributions pro-
portional to m2

e/s and even to m4
e/s

2, which are enhanced
by their highly singular angular dependence and thus in-
tegrate to terms of order 1 and proportional to α/π for
Born and NLO terms respectively. These mass-suppressed
terms are significantly smaller than the leading, logarith-
mically enhanced pieces; they must nevertheless be taken
into account for a consistent treatment. The evaluation
of corrections from virtual plus soft photon emission to
reaction (1), valid for the full angular region, has been
treated in [14]. Essentially it consists of the calculation
of the leptonic tensor Lµν , which has to be multiplied by
the hadronic tensor Hµν , so that a fully differential dis-
tribution is obtained. To arrive at a reasonably compact,
numerically stable result, the limit m2

e/s � 1 for Lµν is
considered. However, terms proportional to m2

e must be
kept if these exhibit the singular angular dependence dis-
cussed above.

The differential rate for the virtual and soft QED cor-
rections is thus cast into the product of a leptonic and
a hadronic tensor and the corresponding factorised phase
space:

dσ =
1
2s
LµνdΦ2(p1 + p2;Q, k1)

× HµνdΦn(Q; q1, · · · , qn)
dQ2

2π
, (2)
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Fig. 1a,b. Comparison of the Q2 differential distribution for different values of the soft photon cutoff: w = 10−3 versus 10−4

and w = 10−4 versus 10−5, at s1/2 = 1.02 GeV. One of the photons was required to have energy > 10 MeV. No further cuts
were applied

Table 1. Total cross section (nb) for the process e+e− →
π+π−γ at NLO for different values of the soft photon cut-
off. Only initial state radiation. One of the photons with en-
ergy larger than 10 MeV for s1/2 = 1.02 GeV and larger than
100 MeV for s1/2 = 10.6 GeV. Q2 < 1 GeV. No further cuts
applied

w
√

s = 1.02 GeV 10.6 GeV

10−3 36.999 (3) 0.15557(7)
10−4 37.021 (3) 0.15548(6)
10−5 37.021 (3) 0.15545(6)

where dΦn(Q; q1, · · · , qn) denotes the hadronic n-body
phase space, including all statistical factors, Q2 is the in-
variant mass of the hadronic system, and dΦ2(p1 + p2;
Q, k1) is the two-body phase space of the photon and the
hadronic system. The tensor Lµν depends on the four-
vectors p1, p2, Q, k1 and the soft photon cutoff w ≡
Emax

γ /(s1/2). Its explicit functional form is given in [14].
The description of the hadronic system is model depen-
dent. It enters only through the hadronic tensor

Hµν = JµJν†, (3)

where the hadronic current has to be parametrised
through form factors [9,23–25]. The running of α is not
taken into account in this programme and can be included
trivially in the final experimental analysis.

The matrix element for the emission from the initial
state of two real hard photons, i.e. Eγi > w(s1/2), with
i = 1, 2,

e+(p1) + e−(p2) → γ∗(Q) + γ(k1) + γ(k2), (4)

is calculated numerically following the helicity amplitude
method with the conventions introduced in [26,27]. The
results from [12], which were used for tagged photon events
are equally applicable for the present purpose.

The virtual plus soft photon contribution and the hard
one depend separately on the soft photon cutoff w used to
regulate the infrared divergences of the virtual diagrams.
The former shows a logarithmic w-dependence. The latter,
after numerical integration of the phase space, exhibits the
same behaviour, whereas their sum must be independent
of w. To show that this indeed occurs is therefore a basic
test of the performance of the programme. The value of
w that optimises the efficiency of the event generation,
avoiding at the same time the appearance of the negative
weights, is determined by this procedure.

Table 1 presents the total cross section for radiative
production of a pair of pions calculated for several val-
ues of the soft photon cutoff at two different cms energies.
The energy of one of the photons was required to be larger
than 10 MeV for s1/2 = 1.02 GeV and larger than 100 MeV
for s1/2 = 10.6 GeV. No further kinematical cuts were ap-
plied, thus allowing to test in particular the small photon
angle region.

For s1/2 = 1.02 GeV the comparison between w =
10−3 and 10−4 indicates a residual w-dependence. The
excellent agreement between w = 10−4 and 10−5, within
the error of the numerical integration, confirms the w-
independence of the result. A value around w = 10−4

seems to be the best choice as observed before for large
angle photons [12,28].

In Figs. 1 and 2 the Q2-dependence of the differential
cross section dσ/dQ2 is compared for different choices of
the cutoff, after integration over the remaining kinematic
variables. Again for s1/2 = 1.02 GeV the comparison be-
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Fig. 2a,b. Comparison of the Q2 differential distribution for different values of the soft photon cutoff: w = 10−3 versus 10−4

and w = 10−4 versus 10−5, at s1/2 = 10.6 GeV. One of the photons was required to have energy > 100 MeV. No further cuts
were applied

tween w = 10−3 and 10−4 shows a residual w-dependence
(Fig. 1a), which disappears beyond w = 10−4 (Fig. 1b).
At a cms energy of 10.6 GeV the result is numerically sta-
ble for w = 10−3 already (Fig. 2a). Stable results are also
obtained for w around and below 10−4 (Fig. 2b). Thus
w = 10−4 is used as the default value in the programme.
Similar tests were performed for the four-pion channels
(see Sect. 4).

The present implementation of PHOKHARA covers
the full angular region for photon emission. This allows
for a number of tests and comparisons with analytical re-
sults that were not possible with the previous version. In
Fig. 3 the results of the programme are compared with
the analytical results of the authors of [30]. We use their
(2.25) and (2.26) for the virtual plus soft part and (2.28)
for the hard emission part. As it was necessary to change
several couplings in the original formulae, we repeat (Ap-
pendix B) the expressions actually used for the compari-
son. Agreement within the statistical uncertainty and in
any case better than 10−3 is evident from this comparison.

Initial state radiation is dominated by photons at small
angles. The inclusion of events with nearly collinear pho-
tons thus leads to a significant enhancement of the ob-
served event rate. The comparison between the differential
cross sections for large angle photon events (30◦ < θγ <
150◦) and without restriction on θγ is shown in Fig. 4. The
pion angles are always assumed to be restricted to the re-
gion 30◦ < θπ± < 150◦. Results are presented for two
different cms energies (s1/2 = 1.02 and 10.6 GeV). There
is a big quantitative difference between these two energies.
For s1/2 = 1.02 GeV a huge contribution from small-angle
photons is observed for the full range of Q2. In contrast
the gain in the cross section for s1/2 = 10.6 GeV is small
as a consequence of the conflicting kinematical constraints
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Fig. 3. Comparison of the virtual+soft and hard contributions
to the π+π− differential cross section with inclusive analytical
results. Soft photon cutoff: w = 10−4

of small photon and large pion angles. FSR has not been
included in these figures. For 10.6 GeV its contribution is
negligible, while for 1.02 GeV and for the cuts used for
Fig. 4 it is sizeable, but can be reduced using the cuts
discussed below.

The R-ratio can in principle be deduced either from
the measurement of the hadronic cross section, which re-
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quires a precise control of the luminosity, or from the ratio
between hadronic and µ+µ− event rates. Various radiative
corrections, e.g. from the running of the electromagnetic
coupling and from ISR cancel in the ratio between the
hadronic and µ+µ− rates. Indeed, one obtains by con-
struction unity, if one considers the properly normalised
ratio

ρπµ ≡ 4(1 + 2m2
µ/Q

2)βµ

β3
π | Fπ |2

dσπ+π−γ(γ)

dσµ+µ−γ(γ)
, (5)

where

βi =

√
1 − 4m2

i

Q2 , i = π, µ,

and Fπ is the pion form factor.
The result ρπµ = 1 is independent of the restrictions

on the photon angular region and is true in the Born
and NLO approximations. The phase space of hadronic
and µ+µ− final states, however, must be fully integrated
(Fig. 5a). For realistic cuts on pion and muon angles the
ratio deviates significantly from 1, a consequence of their
markedly different angular distributions. The size of this
effect depends on the details of the cuts on photon, pion
and muon angles as demonstrated in Fig. 5b,c. In both
figures, one observes a significant, few per cent, difference
between the Born and NLO predictions for ρπµ, depending
on the details of the cuts on the photon and charged par-
ticle angles. At 10.6 GeV the ratio ρπµ is of course again
equal to 1 if pions and muons are fully integrated (Fig. 6a).
In contrast to the situation at lower energies, the inclu-
sion of realistic cuts does not alter this picture drastically,
a consequence of the high correlation between photon and
pion or muon angles: photon and charged particles are
essentially emitted back to back (Fig. 6b).

The shape of these curves depends only on the pion
and muon angular distributions, but not on the form fac-
tor itself. These results can thus be directly used to deduce
the efficiencies of specific experimental cuts in a model-
independent way, since pion and muon angular distribu-
tions are fixed by general considerations. For more com-
plicated final states (e.g. 4π, KKπ, · · · ) the correspond-
ing ratio would, instead of |Fπ|2β3

π/4, directly involve the
corresponding R-ratio, if no cuts on the hadrons are ap-
plied. Otherwise the results depend on the model for the
hadronic form factor implemented in the programme. An
important advantage of the radiative return is implicit in
all these considerations: by measuring Q2 directly, the in-
variant squared mass of the hadronic final state, one has
direct access to R at the corresponding value of Q2. This
differs from the measurement of the inclusive cross sec-
tion as a function of s1/2 (energy scan). To extract the
true R(s), an unfolding has to be performed, which re-
quires in principle the knowledge of the cross section over
the full energy range below and a precise knowledge of the
radiator function. In contrast, using the radiative return
method, it is still necessary to know the QED radiator
function, but no unfolding is required as one measures the
Q2 of the hadronic system, and thus has “access” to the
hadronic cross section at that given Q2.

Let us discuss those αm2
e/s and α(m2

e/s)
2 terms, which

in combination with their singular angular dependence in-
tegrate to corrections of order α/π. These are included in
the present version of PHOKHARA. The corresponding
leading order corrections proportional to m2

e are typically
of the order of a few per cent [31], while the non-leading
ones are of order 0.1%. This can be seen from Fig. 7. The
size of these effects is consistent with the expectations for
α/π terms without logarithmic enhancement. These terms
will become important when the precision of the measure-
ment will be below 1%. Their proper treatment is in that
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case crucial as they do depend on Q2 and do change the
Q2 distribution from which the hadronic cross section is
extracted.

3 Initial versus final state radiation

A potential complication for the measurement of the pion
form factor or generally of the R-ratio may arise from the
interplay between photons from ISR and FSR. Their rel-
ative strength is strongly dependent on the photon angle
relative to the beam and the pion directions, the cms en-
ergy of the reaction and the invariant mass of the hadronic
system. FSR from hadronic final states cannot be pre-
dicted from first principles and thus has to be modelled.
The model amplitude can nevertheless be tested by consid-
ering charge-asymmetric differential distributions, which
arise from the interference between ISR and FSR ampli-
tudes [7]. In leading order the complete matrix element
squared is given by

|M|2 = |MISR|2 + |MFSR|2 + 2Re[MISRM
†
FSR], (6)

which is still independent of the model for FSR.

FSR and its interference with ISR were already in-
cluded in EVA [7] for the two-pion case. The pions were
assumed to be point-like, and scalar QED was applied to
simulate photon emission off the charged pions. It was
demonstrated there that ISR dominates for suitably cho-
sen final states, namely those with hard photons at small
angles relative to the beam, well separated from the pions.
FSR can therefore be reduced to a reasonable limit, and
moreover, can be controlled by the simulation (see also
[32]). Similar results can be obtained using the new ver-
sion of PHOKHARA, were FSR and ISR–FSR interference
are included for two pions and muons (see Appendix A for
details) at LO. The photon emission from pions is again
modelled by a point-like pion–photon interaction. The up-
per two curves of Fig. 8 describe the differential cross sec-
tion with arbitrary photon and pion angles. The contri-
bution of FSR is clearly visible. Once photon emission is
restricted to angles close to the beam and if the pion-
and photon-allowed angular ranges do not overlap (lower
curve), FSR is clearly negligible.

The third term in the right-hand side of (6), ISR–FSR
interference, is odd under charge conjugation, and its con-
tribution vanishes after angular integration. It gives rise,
however, to a relatively large charge asymmetry and, cor-
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respondingly, to a forward–backward asymmetry

A(θ) =
Nπ+

(θ) −Nπ+
(π − θ)

Nπ+(θ) +Nπ+(π − θ)
. (7)

The asymmetry can be used for calibration of the FSR am-
plitude, and fits to the angular distribution A(θ) can test
details of its model dependence. Given sufficiently large
event rates this procedure can be performed for different
θγ , thus allowing for an unambiguous reconstruction of
the FSR amplitude.

This is illustrated in Figs. 9 and 10, where the angu-
lar distributions of π+ and µ+ respectively are shown for
different kinematical cuts. The angles are defined with
respect to the incoming positron. If no angular cut is
applied, the angular distribution in both cases is highly
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PHOKHARA generator. No cuts (upper curves) and suitable
cuts applied (lower curves)

asymmetric as a consequence of the ISR–FSR interfer-
ence contribution. If cuts suitable to suppress FSR, and
therefore the ISR–FSR interference, are applied, the dis-
tributions become symmetric.

These investigations can also be performed for different
photon energies, thus exploring FSR in different regions of
Q2. We will return to this aspect in a future publication.

At B-factories, where one has to deal with very hard
tagged photons, the kinematic separation between the
photon and the hadrons becomes very clear. For events
where hadrons and photon are produced mainly back to
back, the suppression of FSR is naturally accomplished
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and no special angular cuts are therefore needed to con-
trol FSR versus ISR at higher energies (Fig. 11). The rel-
ative size of the FSR is of the order of a few per mille,
but does depend on the value of the pion form factor at
s1/2 = 10 GeV, which is extrapolated from the low energy
data.

The suppression of FSR contributions to π+π−γ events
is also a consequence of the rapid decrease of the form fac-
tor above ∼ 1 GeV. It is therefore instructive to study
the corresponding distributions for µ+µ−γ final states.
For (Q2)1/2 ≤ 1 GeV FSR is still tiny. Around 3 GeV a
small charge-asymmetric interference term becomes visi-
ble (Fig. 12), which is still irrelevant after averaging over
µ+ and µ−. At large Q2, however, FSR plays an impor-
tant role both for the charge asymmetry and the charge
symmetric term.
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4 The four-pion mode

Because of the modular structure of PHOKHARA, ad-
ditional hadronic modes can be easily implemented. The
four-pion channels (2π+2π− and 2π0π+π−), which give
the dominant contribution to the hadronic cross section
in the region from 1 to 2 GeV, are a new feature of our
event generator.

Isospin invariance relates the amplitudes of the e+e− →
2π+2π− and e+e− → 2π0π+π− processes and those for τ
decays into π−3π0 and π+2π−π0 [33,9]. The description
of the four-pion hadronic current follows [9,24]. The basic
building blocks of this current are schematically depicted
in Fig. 13 and described in detail in [9].

Results obtained with PHOKHARA for these channels
have been compared with the Monte Carlo, which simu-
lates the same process at LO [9] and includes additional
collinear radiation through the SF technique. Typically,
differences of order 1% are found (see Figs. 14 and 15),
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Table 2. Total cross section (nb) for the process e+e− → 4πγ
at NLO for different values of the soft photon cutoff at s1/2 =
1.02 GeV. Only initial state radiation. One of the photons with
energy > 10 MeV. Q2 < 1 GeV. No further cuts applied

w 2π+2π− 2π0π+π−

10−3 0.170167(15) 0.55725(5)
10−4 0.170413(14) 0.55844(5)
10−5 0.170431(15) 0.55845(5)

which are of the expected size and of the same order as
for the two-pion final state [12].

The generation of the pion four momenta is however
different from the one described in [9]. In the present ver-
sion of the programme we absorb the most prominent
peaks in the four-pion hadronic current to obtain a more
efficient Monte Carlo generation. The Q2 distribution is
peaked around (Q2)1/2 = 1.5 GeV, with a large width of ∼
0.5 GeV. This is the result of an interplay between several
resonances present in that region. Nevertheless one Breit–
Wigner resonance provides an adequate approximation for
efficient generation. For the approximant and the genera-
tion of the Q2 distribution we use

f3(Q2) =
s

s−Q2 +
s2

(Q2 −m2)2 + Γ 2m2 , (8)

with m = 1.5 GeV and Γ = 0.5 GeV.
It takes care of soft photon emission (s − Q2 ∼ Eγ )

and the aforementioned resonant behaviour. For the pro-
cess e+e− → 2π0π+π−γ(γ) we furthermore absorb the
ω peaks in the four momentum squared Q2

0+− = p2
ω =

(p0 + p+ + p−)2. The approximant used for that pur-
pose, according to which the three-particle four momenta
squared are generated, reads

f4(Q2
134, Q

2
234) = 2 +

mωΓω

(Q2
134 −m2

ω)2 + Γ 2
ωm

2
ω

+
mωΓω

(Q2
234 −m2

ω)2 + Γ 2
ωm

2
ω

, (9)

where Q134 and Q234 are the four momenta of the two
π0π+π− subsystems. The other variables are generated as
described in [9].

Also for the four-pion modes, we have tested the in-
dependence of the result of the soft–hard separation pa-
rameter w. The results are very much similar to the π+π−
mode and are summarised in Table 2 and Figs. 16 and 17.
Again the choice w = 10−4 is the proper one.

5 Conclusions

The Monte Carlo generator PHOKHARA, which simu-
lates the radiative return at electron–positron colliders,
has been extended from large angles into the collinear re-
gion using recent results for the virtual corrections to pho-
ton emission, which are valid for all photon angles. Com-
paring the programme with analytical results, a technical
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1.02 GeV. One of the photons was required to have energy > 10 MeV. No further cuts were applied

precision better than 0.5×10−3 is demonstrated. The im-
portance of NLO corrections for the extraction of a correct
value for the R-ratio is emphasised.

A number of corrections vanish if the ratio between
hadron and muon pair cross section is considered. For low
energies, around 1 GeV, the ratio depends strongly on the
cuts on the charged particles and corrections have to be
applied. At higher energies, around 10 GeV, and for low
Q2, the dependence on these cuts is drastically reduced.

In the new version of PHOKHARA, described in this
article, final state radiation in a leading order treatment

is included. We discuss the implications for the measure-
ment of the pion form factor. Suitable cuts allow, on the
one hand, the determination of this model-dependent am-
plitude, on the other hand it is possible to select configura-
tions that are entirely dominated by initial state radiation.

Finally we extend the programme final states with the
four-pions configuration as a first step towards the inclu-
sion of a multitude of exclusive states.
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Appendix

A The implementation
of the final state emission

Final state emission of one photon and the final–initial
state interference terms are implemented in the present
programme in lowest order by means of the helicity am-
plitude method for both the π+π−γ and the µ+µ−γ final
states. The notation is the same as in [12] and will not be
repeated. The pion–photon interaction is adopted from
scalar electrodynamics.

The helicity amplitudes describing the initial emission
read

MISR(λe+ , λe− , λ1) =
(4πα)
Q2

{
v†
I (p1, λe+)AuI(p2, λe−)

+ v†
II(p1, λe+)BuII(p2, λe−)

}
, (10)

where

A =

(
ε∗(k1, λ1)−k+

1 − 2ε∗(k1, λ1) · p1
)
J−

2k1 · p1

+
J− (

2ε∗(k1, λ1) · p2 − k+
1 ε

∗(k1, λ1)−)
2k1 · p2

(11)

and

B =

(
ε∗(k1, λ1)+k−

1 − 2ε∗(k1, λ1) · p1
)
J+

2k1 · p1

+
J+

(
2ε∗(k1, λ1) · p2 − k−

1 ε
∗(k1, λ1)+

)
2k1 · p2

. (12)

The current Jµ for π+π− in the final state reads

Jµ
2π = ieF2π(Q2)(qπ+ − qπ−)µ, (13)

while for µ+µ− in the final state it is given by

Jµ
2µ(λµ+ , λµ−) = ieū(q1, λµ−)γµv(q2, λµ+). (14)

The part of the amplitude that comes from the final
state emission can be written as

MFSR(λe+ , λe− , λ1) =
(4πα)
s

{
v†
I (p1, λe+)D−uI(p2, λe−)

+ v†
II(p1, λe+)D+uII(p2, λe−)

}
, (15)

where the four-vector Dµ reads

Dµ(λ1) = ieF2π(s)
{

(q1 + k1 − q2)
µ q1 · ε∗(k1, λ1)

q1 · k1

+ (q2 + k1 − q1)
µ q2 · ε∗(k1, λ1)

q2 · k1

− 2ε∗µ(k1, λ1)
}
, (16)

for π+π− in the final state, while for µ+µ− in the final
state it is

Dµ(λ1, λµ+ , λµ−) = ie
{
u†

I (q2, λµ−)ÃµvI(q1, λµ+)

+u†
II(q2, λµ−)B̃µvII(q1, λµ+)

}
, (17)

with

Ãµ =

(
ε∗(k1, λ1)−k+

1 + 2ε∗(k1, λ1) · q2
)
σµ−

2k1 · q2
− σµ− (

2ε∗(k1, λ1) · q1 + k+
1 ε

∗(k1, λ1)−)
2k1 · q1 , (18)

and

B̃µ =

(
ε∗(k1, λ1)+k−

1 + 2ε∗(k1, λ1) · q2
)
σµ+

2k1 · q2
− σµ+

(
2ε∗(k1, λ1) · q1 + k−

1 ε
∗(k1, λ1)+

)
2k1 · q1 . (19)

The FSR matrix element squared and the FSR–ISR in-
terference for pions in the final state agrees numerically
(15 digits) with the code of EVA [7], if non-leading mass
terms ∼ m2

e missing in EVA are added. The largest rel-
ative change of the matrix element squared due to those
missing terms is however as small as 10−6. The sum over
polarisations of the squared matrix element for muon fi-
nal states is numerically identical to the result obtained
by means of the trace method using FORM [34]. For both
final states the external gauge invariance was checked nu-
merically, while one can see at a glance that the above
analytical formulae have that property.

To analyse the contribution from FSR the programme
can be run in three different options: initial state radia-
tion only, initial state radiation plus final state radiation
without interference and complete result with interference
terms. In the last two cases it is necessary to change the
generation of the phase space to absorb final state emis-
sion peaks. For these two options we use three channels
to absorb the peaks in Q2 and in pion (muon) angular
distributions. For the muon case we use the approximant

f1(q2, cos(θµ)) =
1

1 − q2
+

1
q2

(20)

+
1

1 − q2

(
1

1 − v(mµ) cos(θµ)
+

1
1 + v(mµ) cos(θµ)

)
,

where

v(m) =

√
1 − 4m2

s
, q2 =

Q2

s
, (21)

For the pion case we use

f2(q2, cos(θπ))=
1

1 − q2
+

1
(q2 −m2

ρ/s)2+Γ 2
ρm

2
ρ/s

2 (22)
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+
1

1 − q2

(
1

1 − v(mπ) cos(θπ)
+

1
1 + v(mπ) cos(θπ)

)
.

An appropriate change of variables allows for a smooth-
ing of the aforementioned peaks. The q2 and cos(θµ(π)) are
generated according to the functions f1(2)(q2, cos(θµ(π))).
These very simple approximants work well enough to al-
low for relatively fast event generation.

B The analytical formulae used in Sect. 2

The formulae resulting from the analytical evaluation of
the integration over photon angles are adopted from [29,
30] (see also Sect. 2 for details). The contributions of the
virtual + soft corrections to the hadronic invariant mass
(Q2) differential distribution are given by

Q2 dσ
dQ2 =

4α3

3s
R(Q2)

{
1 + q4

1 − q2
(L− 1)

×
(

1 +
α

π

[
log(4w2)(L− 1) +

3
2
L− 2 +

π2

3

])

+
α

π

[
− 1 + q4

2(1 − q2)
log(q2)L2

+
{

1 + q4

1 − q2

(
Li2(1 − q2) + log(q2) log(1 − q2)

− log2(q2)
2

+
5
2

log(q2)
)

− (1 − q2) log(q2) +
q2

2

}
L

+
1 + q4

1 − q2

(
S1,2(1 − q2) +

[
log(q2) − 3

2

]
Li2(1 − q2)

+
[
log(q2) log(1 − q2) − log2(q2)

3
+ log(q2)

− 3 log(1 − q2) − 8
] log(q2)

2

)
+ (1 + q2)

(
2Li3(1 − q2) − S1,2(1 − q2)

− log(1 − q2)Li2(1 − q2) +
log2(q2)

4

)

+
1 − 7q2

2

(
Li2(1 − q2) + log(q2) log(1 − q2)

)

− 1 − 5q2

4

(
log2(1 − q2) +

2π2

3

)

+
3 − 2q2

2
log(1 − q2) +

7 − 5q2

2
log(q2) − 1

]}
, (23)

While the emission of two hard photons, i.e. both photons
with energy larger than w(s1/2), contributes as

Q2 dσ
dQ2 =

4α3

3s
R(Q2)

α

π

×
[
1 + q4

1 − q2

{
2 log

(
1 − q2

2w

)
− log(q2)

2

}
(L− 1)2

+
{

−(1 − q2) + (1 + q2)
log(q2)

2

}
L2

+
{

7
2
(1 − q2) − q2 log(q2) + (1 + q2)

log2(q2)
4

}
L

+
1 + q4

1 − q2

(
−S1,2(1 − q2) − log(q2)

2
Li2(1 − q2)

− 3 log2(q2)
2

+
(
π2

6
+

5
3

)
log(q2)

)

− (1 + q2)
(

Li3(1 − q2)
2

+ S1,2(1 − q2)
)

− π2q2

9

−
(

1
2

+
2q2

3

)
Li2(1 − q2) − (10 − 25q2)

log(q2)
2

+
(

2
(1 − q2)2

− 1
4

− 7q2

3

)
log2(q2)

+
1 − q2

2
− 2

3
q2

1 − q2

(
1 +

log(q2)
1 − q2

)2
]
, (24)

with L = log(s/m2
e) and S1,2 the Nielsen’s generalised

polylogarithm function

Sn,p(z) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0
logn−1(t)

logp(1 − zt)
t

dt, (25)

Lin(z) = Sn−1,1(z) being the polylogarithms

Lin(z) =
∞∑

k=1

zk

kn
, |z| < 1, (26)

and

S1,2(1 − z) =
1
2

log2(z) log(1 − z) + ζ(3)

+ log(z)Li2(z) − Li3(z). (27)

The function R(Q2) is related to the hadronic current
Jem through

∫
Jem

µ (Jem
ν )∗dΦ̄n(Q; q1, . . . , qn)

=
1
6π

(
QµQν − gµνQ

2)R(Q2), (28)

where dΦ̄n(Q; q1, . . . , qn) denotes the n-body phase space
with all statistical factors coming from the hadronic final
state included.

The ratio R(Q2) = σ(e+e− → hadrons)/σpoint for
hadrons = π+π− is equal to

R(Q2) = |F (Q2)|2 β
3
π

4
. (29)
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H. Czyż et al.: The radiative return at φ- and B-factories 575

2. F. Jegerlehner, hep-ph/0104304
3. K. Hagiwara, A.D. Martin, Daisuke Nomura, T. Teubner,

hep-ph/0209187
4. M. Davier, S. Eidelman, A. Höcker, Z. Zhang, hep-
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33. J.H. Kühn, Nucl. Phys. B (Proc. Suppl.) 76, 21 (1999)
34. J.A.M. Vermaseren, Symbolic Manipulations with FORM,

Computer Algebra Nederland, Amsterdam, 1991


